Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We prove that the reconstruction of a certain type of length spaces from their travel time data on a closed subset is Lipschitz stable. The travel time data is the set of distance functions from the entire space, measured on the chosen closed subset. The case of a Riemannian manifold with boundary with the boundary as the measurement set appears is a classical geometric inverse problem arising from Gel’fand’s inverse boundary spectral problem. Examples of spaces satisfying our assumptions include some non-simple Riemannian manifolds, Euclidean domains with non-trivial topology, and metric trees.more » « less
-
Free, publicly-accessible full text available April 30, 2026
-
Abstract We consider the inverse fault friction problem of determining the friction coefficient in the Tresca friction model, which can be formulated as an inverse problem for differential inequalities. We show that the measurements of elastic waves during a rupture uniquely determine the friction coefficient at the rupture surface with explicit stability estimates.more » « less
-
Abstract Consider the geometric inverse problem: there is a set of delta-sources in spacetime that emit waves travelling at unit speed. If we know all the arrival times at the boundary cylinder of the spacetime, can we reconstruct the space, a Riemannian manifold with boundary? With a finite set of sources we can only hope to get an approximate reconstruction, and we indeed provide a discrete metric approximation to the manifold with explicit data-driven error bounds when the manifold is simple. This is the geometrization of a seismological inverse problem where we measure the arrival times on the surface of waves from an unknown number of unknown interior microseismic events at unknown times. The closeness of two metric spaces with a marked boundary is measured by a labeled Gromov–Hausdorff distance. If measurements are done for infinite time and spatially dense sources, our construction produces the true Riemannian manifold and the finite-time approximations converge to it in the metric sensemore » « less
-
We prove that the boundary distance map of a smooth compact Finsler manifold with smooth boundary determines its topological and differential structures. We construct the optimal fiberwise open subset of its tangent bundle and show that the boundary distance map determines the Finsler function in this set but not in its exterior. If the Finsler function is fiberwise real analytic, it is determined uniquely. We also discuss the smoothness of the distance function between interior and boundary points.more » « less
An official website of the United States government

Full Text Available